Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis.
نویسندگان
چکیده
Among the three primary auxin-induced gene families, Auxin/Indole-3-Acetic Acid (Aux/IAA), Gretchen Hagen3 (GH3) and SMALL AUXIN UP RNA (SAUR), the function of SAUR genes remains unclear. Arabidopsis SAUR genes have been phylogenetically classified into three clades. Recent work has suggested that SAUR19 (clade II) and SAUR63 (clade I) promote cell expansion through the modulation of auxin transport. Herein, we present our work on SAUR41, a clade III SAUR gene with a distinctive expression pattern in root meristems. SAUR41 was normally expressed in the quiescent center and cortex/endodermis initials; upon auxin stimulation, the expression was provoked in the endodermal layer. During lateral root development, SAUR41 was expressed in prospective stem cell niches of lateral root primordia and in expanding endodermal cells surrounding the primordia. SAUR41-EGFP (enhanced green fluorescent protein) fusion proteins localized to the cytoplasm. Overexpression of SAUR41 from the Cauliflower mosaic virus 35S promoter led to pleiotropic auxin-related phenotypes, including long hypocotyls, increased vegetative biomass and lateral root development, expanded petals and twisted inflorescence stems. Ectopic SAUR41 proteins were able to promote auxin transport in hypocotyls. Tissue-specific expression of SAUR41 from the PIN1, WOX5, PLT2 and ACR4 promoters induced the formation of new auxin accumulation/signaling peaks above the quiescent centers, whereas tissue-specific expression of SAUR41 from the PIN2 and PLT2 promoters enhanced root gravitropic growth. Cells in the root stem cell niches of these transgenic seedlings were differentially enlarged. The distinctive expression pattern of the SAUR41 gene and the explicit function of SAUR41 proteins implied that further investigations on the loss-of-function phenotypes of this gene in root development and environmental responses are of great interest.
منابع مشابه
NO VEIN mediates auxin-dependent specification and patterning in the Arabidopsis embryo, shoot, and root.
Local efflux-dependent auxin gradients and maxima mediate organ and tissue development in plants. Auxin efflux is regulated by dynamic expression and subcellular localization of the PIN auxin-efflux proteins, which appears to be established not only through a self-organizing auxin-mediated polarization mechanism, but also through other means, such as cell fate determination and auxin-independen...
متن کاملRopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis.
The root stem cell niche defines the area that specifies and maintains the stem cells and is essential for the maintenance of root growth. Here, we characterize and examine the functional role of a quiescent center (QC)-expressed RAC/ROP GTPase activator, RopGEF7, in Arabidopsis thaliana. We show that RopGEF7 interacts with At RAC1 and overexpression of a C-terminally truncated constitutively a...
متن کاملRole of the Arabidopsis PIN6 Auxin Transporter in Auxin Homeostasis and Auxin-Mediated Development
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we ...
متن کاملThe Arabidopsis RETARDED ROOT GROWTH gene encodes a mitochondria-localized protein that is required for cell division in the root meristem.
To develop a growing root, cell division in the root meristem has to be properly regulated in order to generate or propagate new cells. How cell division is regulated in the root meristem remains largely unknown. Here, we report the identification and characterization of the Arabidopsis (Arabidopsis thaliana) RETARDED ROOT GROWTH (RRG) gene that plays a role in the regulation of root meristem c...
متن کاملPositional Information by Differential Endocytosis Splits Auxin Response to Drive Arabidopsis Root Meristem Growth
In the Arabidopsis root meristem, polar auxin transport creates a transcriptional auxin response gradient that peaks at the stem cell niche and gradually decreases as stem cell daughters divide and differentiate [1-3]. The amplitude and extent of this gradient are essential for both stem cell maintenance and root meristem growth [4, 5]. To investigate why expression of some auxin-responsive gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 54 4 شماره
صفحات -
تاریخ انتشار 2013